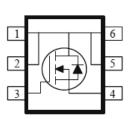
N-Channel 300-V (D-S) MOSFET

Key Features:

- Low r_{DS(on)} trench technology
- · Low thermal impedance
- · Fast switching speed


Typical Applications:

- · White LED boost converters
- Automotive Systems
- Industrial DC/DC Conversion Circuits

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}(m\Omega)$	I□ (A)	
300	1723 @ V _{GS} = 10V	0.88	
	$1750 @ V_{GS} = 6.5V$	0.87	

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}$ C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Limit	Units	
Drain-Source Voltage			300	V	
Gate-Source Voltage	V_{GS}	±20	V		
Continuous Drain Current a	T _A =25°C	I_	0.9		
Continuous Drain Current	T _A =70°C	I _D	0.8	Α	
Pulsed Drain Current ^b	I _{DM}	5			
Continuous Source Current (Diode Conduction) a		I _S	0.9	Α	
Power Dissipation ^a	T _A =25°C	P_{D}	2	W	
Fower Dissipation	T _A =70°C	' D	1.3	V V	
Operating Junction and Storage Temperature Range			-55 to 150	°C	

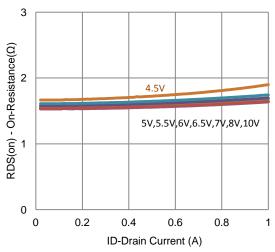
THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Units	
Maximum Junction-to-Ambient ^a	t <= 10 sec	$R_{\theta JA}$	62.5	°C/W	
Maximum Junction-to-Ambient	Steady State	IΛθJA	110	C/VV	

1

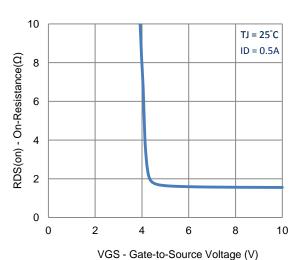
Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

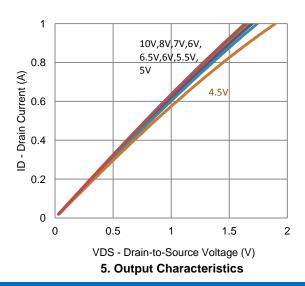
Electrical Characteristics

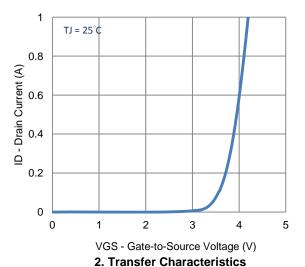

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
	Static					
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \text{ uA}$	1			V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
Zero Gate Voltage Drain Current	lass	$V_{DS} = 240 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA
	I _{DSS}	$V_{DS} = 240 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	1.32			Α
	r	$V_{GS} = 10 \text{ V}, I_D = 0.9 \text{ A}$			1723	mΩ
Drain-Source On-Resistance ^a	r _{DS(on)}	$V_{GS} = 6.5 \text{ V}, I_D = 0.8 \text{ A}$			1750	11122
Forward Transconductance ^a	g _{fs}	$V_{DS} = 50 \text{ V}, I_{D} = 0.9 \text{ A}$		2		S
Diode Forward Voltage ^a	V_{SD}	$I_S = 0.45 \text{ A}, V_{GS} = 0 \text{ V}$		0.74		V
		Dynamic ^b				
Total Gate Charge	Q_g	$V_{DS} = 100 \text{ V}, V_{GS} = 6.5 \text{ V},$ $I_{D} = 0.5 \text{ A}$		5		
Gate-Source Charge	Q_gs			1.9		nC
Gate-Drain Charge	Q_gd	1B = 0.0 71		2.3		
Turn-On Delay Time	t _{d(on)}	$V_{DS} = 100 \text{ V}, R_{L} = 200 \Omega,$ $I_{D} = 0.5 \text{ A},$ $V_{GEN} = 10 \text{ V}, R_{GEN} = 6 \Omega$		5		
Rise Time	t _r			4		nc
Turn-Off Delay Time	$t_{d(off)}$			14		ns
Fall Time	t _f			7		
Input Capacitance	C _{iss}			231		
Output Capacitance	C _{oss}	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$		9		pF
Reverse Transfer Capacitance	C_{rss}			5		

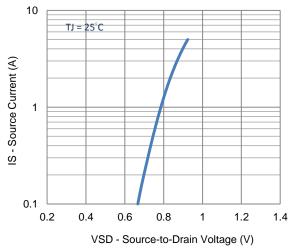
Notes

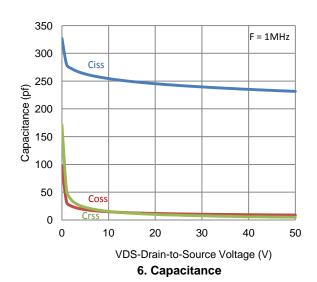

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

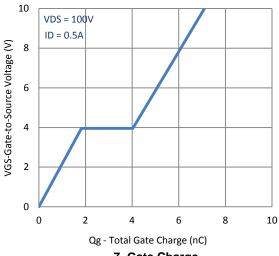
Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.

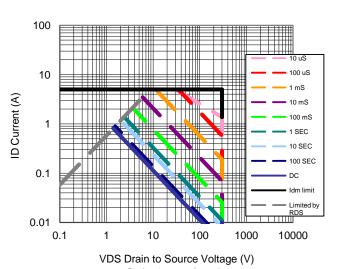

Typical Electrical Characteristics

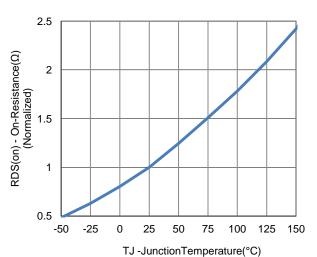


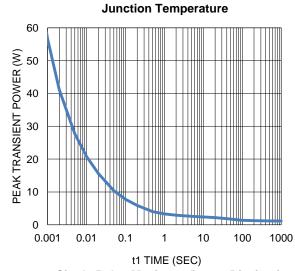

1. On-Resistance vs. Drain Current

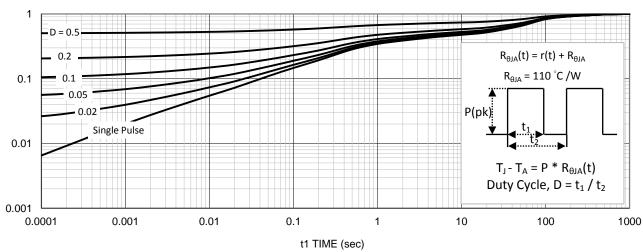

3. On-Resistance vs. Gate-to-Source Voltage



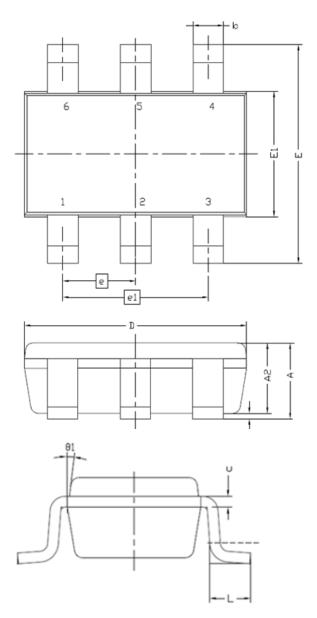

4. Drain-to-Source Forward Voltage


Typical Electrical Characteristics


7. Gate Charge



8. Normalized On-Resistance Vs



10. Single Pulse Maximum Power Dissipation

11. Normalized Thermal Transient Junction to Ambient

Package Information

Symbol	MILLIMETERS		
Symbol	MIN	MAX	
Α	0.8	1.2	
A1	0	0.1	
A2	0.7	1.1	
b	0.3	0.5	
С	0.1	0.2	
D	2.8	3.1	
Е	2.6	3	
E1	1.4	1.7	
е	0.9	1	
e1	1.8	2	
L	0.3	0.6	
θ1	7° NOM		
	•		

Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.